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Bats are the only mammals capable of true flight. Critical adaptations for flight

include a pair of dramatically elongated hands with broad wing membranes.

To study the molecular mechanisms of bat wing evolution, we perform

genomewide mRNA sequencing and in situ hybridization for embryonic bat

limbs. We identify seven key genes that display unique expression patterns

in embryonic bat wings and feet, compared with mouse fore- and hindlimbs.

The expression of all 50HoxD genes (Hoxd9–13) and Tbx3, six known crucial

transcription factors for limb and digit development, is extremely high and

prolonged in the elongating wing area. The expression of Fam5c, a tumour sup-

pressor, in bat limbs is bat-specific and significantly high in all short digit

regions (the thumb and foot digits). These results suggest multiple genetic

changes occurred independently during the evolution of bat wings to elongate

the hand digits, promote membrane growth and keep other digits short.

Our findings also indicate that the evolution of limb morphology depends

on the complex integration of multiple gene regulatory networks and biologi-

cal processes that control digit formation and identity, chondrogenesis, and

interdigital regression or retention.
1. Introduction
Bats are the only mammals naturally capable of powered and sustained flight, and

achieve this flight using wings [1]. Unlike the avian wing with feathers, the bat wing

is supported by four elongated digits within the wing membrane (figure 1b). While

the four posterior fingers (forelimb digits II–V) of bats are dramatically elongated,

the thumb (forelimb digit I) and hindlimb digits remain short and are similar in

length and width to each other [2]. The longest finger, forelimb digit III, is 1.54

times as long as the head–body length in the common bent-wing bat (Miniopterus
schreibersii). In contrast, its thumb and hindlimb digits are only 0.09 and 0.14 times

relative to the head–body length. In mouse and human, the longest finger or foot

digit is no more than 0.17 (0.08–0.17) times relative to the head–body length

(figure 2a). This highlights the impressive fact that the longest bat finger is more

than nine times the proportionate length of a human finger.

We hypothesized that the dramatic morphological change in bat forelimb

required a combination of changes in the expression of many genes [3]. How-

ever, so far, targeted candidate gene approaches have identified only seven

genes with differences in expression in bat forelimb compared with hindlimb

and mouse limbs during development. Only two of these are transcription fac-

tors that may play an upstream and regulatory role for bat wing development

[4–9]. Thus, the full complexity of the mechanism of bat wing evolution

remains to be shown, and the key differentially expressed genes contributing

to this unique morphology remain to be identified.

We have taken a genomewide approach to investigate how the transcription

profiles were altered during bat wing evolution. We performed a transcriptome
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Figure 1. Morphological comparison and sampling positions for mRNA-Seq. (a,b) Morphology of adult mouse and bat (M. schreibersii) limbs. (c – h) Sampling
positions for mRNA-Seq. Samples are enclosed by red lines, except for the interdigital tissues at stage 17. (c,d ) Stage 14. (e,f ) Early stage 17. (g,h) Middle
fetal stage. The dorsal view of the autopod is shown with anterior up and distal to the right. FI, FII, FIII, FIV and FV: forelimb digits I, II, III, IV and V; FA,
FM, FP, HA, HM and HP: anterior (A), middle (M) and posterior (P) parts of the fore- (F) and hindlimb (H) buds; FW: interdigital tissue between forelimb
digits I and II; FD: forelimb digits II – V; FF (yellow dots): interdigital tissues between forelimb digits II and V; HD: hindlimb digits I – V; HW ( purple dots): inter-
digital tissues between hindlimb digits I and V; FL: metacarpals of forelimb digits II – V; HS: metatarsals of hindlimb digits I – V. Scale bars, 2 cm in (a,b), 200 mm
in (c,d ), 500 mm in (e,f ) and 2 mm in (g,h).
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sequencing approach (mRNA-Seq) for bat’s fore- and hind-

limbs at a series of developmental stages. We validated these

results in comparison with other mammals by in situ hybridiz-

ation (ISH) for embryonic bats and mice. Finally, through these

analyses, we have identified a subset of highly differentially

expressed genes that include six important transcription factors

for limb development that likely play a role in the evolution of

the unique forelimb morphology of bats.
2. Material and methods
(a) Sample collection
Common bent-wing bats (M. schreibersii) were captured from a

cave at Anhui province of China (30820.2630 N, 117850.1800 E)

from May to June 2012. For mRNA-Seq, six samples (FA, FM,

FP, HA, HM and HP) were collected from anterior, middle and
posterior parts of the fore- and hindlimb buds of three individuals

at stage 14 (figure 1c,d). Another six samples (FI, FW, FD, FF, HD

and HW) were collected from eight individuals at stages 15–17,

when the forelimb digit became elongating and the interdigital tis-

sues had not disappeared in the hindlimb. These samples are

forelimb digit I (FI), interdigital tissue between forelimb digits I

and II (FW), the elongating forelimb digits II–V (FD), interdigital

tissues between forelimb digits II and V (FF), hindlimb digits

I–V (HD) and interdigital tissues between hindlimb digits I and

V (HW; figure 1e,f). The last two samples (FL and HS) were col-

lected from the elongating metacarpals of forelimb digits II–V

(FL) and the metatarsals of hindlimb digits I–V (HS) of three

individuals at middle fetal stage (figure 1g,h).

(b) Identifying embryonic stages
Bat and mouse embryonic stages are identified according to pre-

vious studies [10–12]. Because of differences in species, pregnancy

duration and the heterochrony of forelimb and hindlimb, it is
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Figure 2. Comparison of digit lengths in different species and expression levels of Hoxd9 – 13, Tbx3 and Fam5c in mRNA-Seq samples. (a) Ratios of digit
length relative to head – body length (L) in the bat, mouse and human. FI, FIII: forelimb digits I and III; HI, HIII: hindlimb digits I and III. Error bars,
mean+ s.d. (n ¼ 15). (b – h) Expression levels of Hoxd 9 – 13, Tbx3 and Fam5c in mRNA-Seq samples. Symbols of the samples as in figure 1. S14: stage 14;
S15 – 17: stages 15 – 17; FS, fetal stage.
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challenging to define exact equal stages between two species that are

from two different orders. However, we can give a rough corre-

sponding stage of mice to bats by taking the following five factors

into consideration (i) overall appearance of the autopod; (ii) digit

condensation (electronic supplementary material, figure S1);

(iii) the number of phalanges (electronic supplementary material,

figure S1); (iv) regression of interdigital tissues and (v) appearance

of claw primordia or keratinized claws. We also consulted and

compared with other relevant studies [12,13].

(c) mRNA-Seq and data analysis
Total RNA was extracted using the RNeasy mini kit (Qiagen), and

treated with DNase I using RNase-free DNase set (Qiagen).

TruSeq RNA sample prep kit (Illumina), Truseq PE cluster kit (Illu-

mina) and Truseq SBS kit (Illumina) were used for constructing

libraries, cluster amplification and final sequencing-by-synthesis.

mRNA sequencing (mRNA-Seq) was performed using a HiSeq-

2000 sequencing system (Illumina). Image analysis, base calling

and extraction of 100 bp pair-end reads were performed using the

Illumina pipeline. The transcriptome sequences were de novo

assembled using Trinity package [14,15]. Assembled contigs were

searched using BLASTX against the NCBI non-redundant nucleo-

tide database with an E-value threshold of 1 � 1025. The resulting

best blast hits were extracted, and coding sequences were sub-

sequently determined. Read counts of all genes were then

estimated using RSEM software in the Trinity package [16]. Nor-

malization of gene counts (i.e. gene expression levels) and

differential expression analysis were performed by the methods

we described previously [17]. Briefly, data were normalized by

the trimmed mean of M values (TMM) method using the edgeR

package [18,19], and the DEGseq package [20] was used to identify

differentially expressed genes between samples. The cut-off of sig-

nificantly differential expression is a q-value [21] less than 0.0001.

(d) In situ hybridization
The procedure and reagents used for ISH are the same as we

described previously [17]. Briefly, total RNA was extracted from

bat (M. schreibersii) and mouse (Mus musculus) embryos, and

then cDNA was synthesized from the total RNA. Primers used

for amplifying investigated genes are shown in the electronic
supplementary material, table S1. PCR products were purified

and cloned into pGEM-T vector. ISH probes were synthesized by

linearizing the plasmid with enzyme and transcribing with T7 or

SP6 polymerase, labelled with digoxigenin, and hybridized with

embryos at 708C.
3. Results
(a) Significant differential expression of seven major

genes in bat fore- and hindlimbs
Bat forelimb digits condense at approximately stage 15 and

elongate during subsequent stages [10] (electronic supplemen-

tary material, figure S1). To find genes likely to contribute to

digit elongation, we applied mRNA-Seq to bat fore- and hind-

limb digits at stages 15–17. We compared the mRNA-Seq data

of the elongating forelimb digits with that of digits that remain

short (thumb and hindlimb digits; figure 1e,f). We identified

426 genes that are expressed at a significantly higher level

in the elongating forelimb digits than in the short digits,

and 532 genes that are expressed at a significantly higher

level in the short digits than in the elongating forelimb digits

(q , 0.0001). To limit subsequent analysis to those key genes

that may play a prominent role in evolution of morphology,

we sorted the genes by expression fold change and looked

for genes with high expression in the elongating or short

digits. Among the 30 genes with changes over fourfold, we

found a set of transcription factors important for limb develop-

ment; Hoxd9–12 and Tbx3 are in the top eight genes that are

expressed at a significantly higher level in the elongating fore-

limb digits than in the short digits, and Fam5c is the top gene

that is expressed at a significantly higher level in the short

digits than in the elongating forelimb digits (figure 2).

Although the expression fold change of Hoxd13 is 1.32, it

is expressed at a significantly higher level in the elongating

forelimb digits than in the short digits (q , 0.0001; figure 2f ).
We also analysed the mRNA-Seq data of these genes at stage

14 (limb bud stage) and at the fetal stage (figure 1c,d,g,h). Before
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digit condensation, Hoxd10–13 and Tbx3 are already signifi-

cantly highly expressed in the middle and posterior regions of

the forelimb bud where elongated digits will form, compared

with the corresponding regions of the hindlimb bud (figure 2).

Fam5c is already significantly highly expressed in the forelimb

anterior region and the entire hindlimb bud, where the

short digits will develop, compared with regions where the

rapidly elongating digits will form (figure 2h). In the middle

of fetal stage, when all digits have begun to calcify and claws

are formed, Hoxd9–13 genes are still significantly highly

expressed in the elongating metacarpals II–V compared with

the metatarsals (figure 2).

(b) Prolonged and high expression of 50HoxD genes in
the elongating wing area

To validate the mRNA-Seq results and understand the evol-

ution of spatio-temporal expression of 50HoxD genes in the

bat relative to a mammal with a more generalized limb mor-

phology, we performed ISH in the common bent-wing bat

and mouse at a continuous series of embryonic stages. The

results are consistent with the mRNA-Seq data and show that

expression of Hoxd9–13 is much higher and prolonged in the

elongating wing area compared with the bat thumb, hindlimbs,

and mouse fore- and hindlimbs. In bats, Hoxd9–11 are highly

expressed in hand digits II–V and their interdigital tissues

from stage 14 to late stage 19, but expressed in the bat foot

only at stage 14 (figure 3 and the electronic supplementary

material, figures S2 and S3). Hoxd12 is highly expressed in

hand digits II–V and their interdigital tissues from late stage

14 to late stage 19, but hardly expressed in the bat foot from

late stage 17 to late stage 19 (electronic supplementary material,

figure S4). The expression dose and area of Hoxd9–12 in the foot
are lower and smaller than those in the hand (figure 3 and the

electronic supplementary material, figures S2 and S4). The

expression patterns of Hoxd13 in bat limbs before stage 16

have been previously described in another bat species, Carollia
perspicillata [6]. In this study, we find that Hoxd13 is highly

expressed in hand digits II–V from early stage 18 to middle

stage 19, but weakly expressed in the bat foot at early stage

18 and nearly not expressed in the bat foot from late

stage 18 to middle stage 19 (electronic supplementary material,

figure S5). In mice, Hoxd9 is only expressed in both limb buds at

E11.0, corresponding to bat early stage 14, and not expressed in

either hand or foot afterwards (figure 3). Hoxd10–13 are

expressed in both hand and foot from E11.5 to E15.0, corres-

ponding to bat stages 14–17, but weakly expressed at E15.5

and nearly not expressed afterwards (electronic supplementary

material, figures S2–S5). It is interesting that the expression

levels of Hoxd10 and Hoxd11 are much higher in the bat hand

plate than those in the bat foot plate and in both limbs of

the mouse at bat stage 15 (corresponding to mouse E12.5),

showing a transient elevation in the expression dose (electronic

supplementary material, figures S2 and S3).

(c) Prolonged and high expression of Tbx3 in the
posterior wing area

To validate the mRNA-Seq data and compare the expression

pattern of Tbx3 in bat limbs with that of mouse limbs, we per-

formed ISH in the common bent-wing bat and mouse at a

continuous series of embryonic stages. The results are consistent

with the mRNA-Seq data and show that expression of Tbx3 is

much higher and prolonged until late stage 19 throughout the

elongating wing area compared with the bat thumb, hindlimbs

and mouse fore- and hindlimbs (electronic supplementary
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Figure 4. Schematic diagram of unique expression patterns of the genes
investigated in this study during bat limb development. 50HoxD genes
(blue and orange) are highly expressed in interdigital regions and in the peri-
chondrium of hand digits II – V in early stages, and then reduced in the
interdigital tissue and concentrated in the perichondrium of the elongating
digits after stage 16. Tbx3 expression (yellow and orange) is highly expressed
and maintained in the interdigital regions and in the perichondrium of fore-
limbs throughout the investigated stages. Fam5c (pink) is highly expressed at
the distal ends of the thumb and its immediate interdigital tissue and
throughout the border of the entire foot plate at late stage 15 (S15L).
Then, Fam5c nearly disappears in both fore- and hindlimbs in stage 16,
but comes back at the tip and the forming articulations of the thumb
and all the hindlimb digits, as well as the articulations of forelimb digit V
in early stage 17 (S17E). At late stage 19 (S19L), Fam5c expression is
obviously present at the tips of all the foot digits and faintly at the tip
of thumb. Orientation of limbs as in figure 1. F, forelimb; H, hindlimb.
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material, figure S6). In mouse, the expression of Tbx3 is largely

restricted to the margin of autopods and hardly expressed at

the interdigital tissues of both limbs as it is in the bat wing

(electronic supplementary material, figure S6).

Although the expressions of Tbx3 and 50HoxD genes are all

prolonged in the bat wing, the expression of Tbx3 is different

from that of 50HoxD genes in two aspects. First, the expression

region of Tbx3 is more posterior than that of 50HoxD genes. It is

highly expressed in bat interdigital tissues between forelimb

digits III and V, weakly expressed in bat interdigital tissues

between forelimb digits I and III, and hardly expressed in the

interdigital regions of bat hindlimbs and mouse fore- and hind-

limbs in all embryonic stages (electronic supplementary

material, figure S6). Additionally, Tbx3 expression is main-

tained in interdigital regions and in the perichondrium of

bat forelimbs throughout the investigated stages, whereas the

expressions of Hoxd9–13 are reduced in the interdigital

tissue and concentrated in the perichondrium of the elongating

digits after stage 16 (figure 3 and electronic supplementary

material, figures S2–S6).

(d) Unique and bat-specific expression of Fam5c in bat
short digit area

The results of ISH for Fam5c are consistent with the mRNA-Seq

data and show more detailed expression domains of this gene.

In the forelimb, it first appears at the anterior and middle

margin of the limb bud in early stage 14, and then retreats to

the anterior border of the limb bud in middle stage 14 (elec-

tronic supplementary material, figure S7a,c). When digits are

condensing in the forelimb at stage 15, Fam5c is highly

expressed at the distal ends of the thumb and its immediate

interdigital tissue, decreasingly expressed at the margin of

interdigital tissue between digits II and III, with no expression

posteriorly (electronic supplementary material, figure S7e,g). In

the hindlimb, Fam5c is first expressed weakly at the anterior

margin of the limb bud in early stage 14, and then increasingly

expressed from the anterior to the posterior margin of the limb

bud and foot plate, and finally highly expressed throughout

the border of the entire foot plate at the end of stage 15

(electronic supplementary material, figure S7b,d,f,h). The

expression of Fam5c nearly disappears in both fore- and hind-

limbs in stage 16, but comes back at the tip and the forming

articulations of the thumb and all the hindlimb digits, as well

as the articulations of forelimb digit V, in stage 17 (electronic

supplementary material, figures S7i–l and S1e,f). From stage

18 to 19, its expression is obviously present at the tips of

all the foot digits and faintly at the tip of the thumbs (electro-

nic supplementary material, figure S7m–p). In contrast to

diverse expression in bat limb, we did not detect any

expression of Fam5c in mouse limbs, but in the brain as

previously reported [22].
4. Discussion
Hoxd10–13 are important transcription factors for autopod

development and determining digit identity and morphology

[23–25]. In mouse, loss of 50HoxD genes results in a reduction

in digit length, whereas increasing the expression of Hoxd11
by gene duplication causes an increase in digit length

[26–28]. Moreover, Zakany et al. [29] have shown that

50HoxD genes regulate digit length in a dose-dependent
manner. Our results are consistent with a hypothesis that

higher levels of HoxD gene expression promote digit

elongation in bats. Although Hoxd9 deletion in mouse pro-

duces no measurable phenotype in the digits, there is a

reduction in the humerus length suggesting a role in endo-

chondral skeletal growth [30,31]. Our previous Tag-Seq study

on another bat species (Myotis ricketti) predicted that Hoxd9,

as well as Tbx3, are expressed at significantly higher levels in

the elongating hand than in the foot at the fetal stage [32], sup-

porting the hypothesis that these genes display similar

expression patterns throughout the bat lineage. Although the

expression fold change of Hoxd13 is low after stage 14, even a

slight dose change of this gene can readily affect the length

of limb segments, including digits [30]. Thus, our findings of

unique expression patterns of Hoxd9–13 suggest an integral

role of these genes for bat digit elongation.

Hockman et al. [8] found that a second wave of Shh
expression in the interdigital membrane of bat forelimb at

early stage 16. Because 50HoxD genes can induce Shh
expression in limbs [23,33], we propose that the short-term

re-initiation of Shh expression in bat wing is caused by the sig-

nificantly high expression of 50HoxD genes at stages 15–16,

especially the transient elevation in the expression dose of

Hoxd10 and Hoxd11 at stage 15. Our previous study and

Liang et al. did not find positive selection acting on the

coding sequences of any 50HoxD genes in the common ances-

tor of bats, suggesting that functions of these genes are

important and conserved [34,35]. Our finding of prolonged

and high expression of 50HoxD genes in bat wings suggests a

strong positive selection acted on enhancers to alter their

expression patterns during wing formation in bat ancestors.

Mutations in the HoxD limb enhancer, the global control

region, may underlie lengthening of the bat wing digits [36].



rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20133133

6
In chicken, transient expression of Tbx3 was detected at

interdigital regions of foot digits in stages 27–30, correspond-

ing to bat stages 15–17. However, this expression is weaker

and shorter than that in the bat forelimb [37,38]. The differ-

ence between the expression of 50HoxD genes and Tbx3 in

bat wings suggests that these genes may play different roles

in bat wing formation, especially at late embryonic stages.

Studies have shown that Tbx3 can suppress apoptosis and

promote cell proliferation in a variety of cell lines and

organs [39–42], suggesting an important role in inhibiting

the regression of forelimb interdigital tissues and promoting

the growth of wing membranes in bats. In addition, Tbx3
can specify posterior digit identity and suppress osteoblast

differentiation [38,43], suggesting a possible contribution to

elongating the posterior fingers by promoting chondrocyte

proliferation and delaying osteoblast differentiation.

Fam5c, also known as Brinp3, was originally identified in

mouse brain in 2004 [22]. The expression and function of this

gene in limb development have not been reported. The bat-

specific expression of Fam5c in limbs suggests that this gene

has evolved specific functions for bat autopod development.

Fam5c is a crucial soluble bone anabolic factor that is produced

from muscle cells and promotes osteoblast differentiation and

mineralization of osteoblasts [44]. In addition, Fam5c was

identified as a tumour suppressor in tongue squamous cell

carcinoma, and its methylation rates increased in gastric

cancer [45,46]. Thus, its high expression in the region of bat

short digits (the thumb and foot digits) potentially restricts

endochondral growth and promotes osteoblast differentiation.
In conclusion, the data presented here reveal that changes in

the expression patterns of multiple key genes correspond to the

morphological changes during bat wing evolution. These genes

function in three distinct areas of limb development (figure 4).

First, 50HoxD genes are highly expressed for a longer duration

in the perichondrium of rapidly elongating digits. Second,

Tbx3 is highly expressed for a longer period of time in the

tissue that forms the interdigital wing membranes. Finally,

Fam5c is highly expressed in the thumb and hindlimb digits

that remain short. Together, these genes and their distinct bio-

logical functions support a model whereby the evolution of

bat wing morphology proceeded through the integrated control

of a complex set of gene regulatory mechanisms impacting

varied aspects of tissue morphology.
All procedures involving animals were carried out in accordance
with the Policy on the Care and Use of Animals, approved by the

Ethical Committee, Institute of Molecular Ecology and Evolution,
East China Normal University.
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