
Self-organization in the limb: a Turing mechanism for
digit development
Kimberly L Cooper

Available online at www.sciencedirect.com

ScienceDirect
The statistician George E. P. Box stated, ‘Essentially all models

are wrong, but some are useful.’ (Box GEP, Draper NR:

Empirical Model-Building and Response Surfaces. Wiley;

1987). Modeling biological processes is challenging for many of

the reasons classically trained developmental biologists often

resist the idea that black and white equations can explain the

grayscale subtleties of living things. Although a simplified

mathematical model of development will undoubtedly fall short

of precision, a good model is exceedingly useful if it raises at

least as many testable questions as it answers. Self-organizing

Turing models that simulate the pattern of digits in the hand

replicate events that have not yet been explained by classical

approaches. The union of theory and experimentation has

recently identified and validated the minimal components of a

Turing network for digit pattern and triggered a cascade of

questions that will undoubtedly be well-served by the

continued merging of disciplines.
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Introduction
Fingers allow us to grasp objects and to explore and

manipulate our three-dimensional environment. Fingers

enable me to type this sentence and for you to turn the page

or click a mouse. Yet for all of the appreciation that we have

for the usefulness of our digits and awe for their intricate

construction, there are many remaining questions about

how we develop five precisely patterned fingers and toes

with a robust and reproducible digit-interdigit periodicity.

Our understanding of digit patterning mechanisms has

traditionally focused largely on secreted morphogens and

their concentration-dependent effects on positional iden-

tities across a field of cells. This work has been extensively
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reviewed elsewhere [1–5] and contributed to a deep un-

derstanding of the dynamic processes of pattern formation.

In the background of these classical embryological and

developmental genetic studies, theoreticians have long

hypothesized that our fingers may have a greater connec-

tion to mathematics than our ability to count to ten. Alan

Turing’s 1952 theory on the chemical basis of self-orga-

nization in pattern formation [6�] inspired questions

about how such a mechanism, in addition to explaining

the stripes and spots of animal coloration, might also

explain the formation of structures including the digits

of the hand and foot, collectively termed the autopod

[7�,8–14,15�,16,17�]. The integration of developmental

genetics and computational modeling indicates the or-

dered array of digits need not depend on a coordinate

system for the precise position of each finger. Rather

there may be a degree of self-organization whereby the

digits establish their own periodicity. Indeed, this work

nicely explains the ability of digits to form in re-aggre-

gated limb buds in absence of positional information [18].

Towards a turing model of digit pattern
Turing’s model of the chemical basis of pattern formation

centers on the theoretical activities and interactions of

diffusible molecules [6�]. Two types of simple molecular

networks would conform to the model: an activator and an

inhibitor or an activator and the depletion of its substrate

[19]. Specifically in the context of digit development, an

activator would be predicted to induce digit cartilage

differentiation and also to amplify itself by positive feed-

back. At the same time, the activator either produces an

inhibitor of cartilage differentiation or depletes a substrate

in the process of amplifying itself. In either case, if all

molecules in the network are expressed equivalently with

the same reaction rates, the field of tissue would be

homogeneous with no cartilage condensations. In order

for a pattern of condensations to emerge, an initiating

heterogeneity, which can be stochastic, is amplified by

differing rates of diffusion of component molecules. The

auto-amplification at short range (peak of cartilage) and

cross-inhibition at long range (valley between cartilages)

will spontaneously form a periodic pattern.

Several Turing models have proposed the identities of

activators and inhibitors that are all capable of computa-

tionally simulating the ordered array of digits [8,9,14,16].

However, until recently, few had merged theory with

experimental validation of model predictions in the

intact limb. In the most recent modeling approach
www.sciencedirect.com
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[17�], Raspopovic and colleagues first experimentally

pursued a prediction from previous Turing models of

digit formation to identify members of key signaling

pathways that are expressed in phase or out of phase

with Sox9, an HMG-box transcription factor that is an

early marker and is itself required for digit chondrogen-

esis [20]. This highlighted both the in phase response to

Bmp signaling and the out of phase activation of Wnt

signaling and expression of the Bmp2 ligand. Previous

work determined Bmp signaling activates and Wnt sig-

naling inhibits Sox9 expression. Briefly summarizing

extensive supplementary data testing all possible config-

urations of a model resulting from the three players with

these two interactions held constant, a minimal topology

was determined to simulate the observed pattern of Sox9
expression and Bmp activity together out of phase with

both the Bmp2 ligand and Wnt target genes (Figure 1a).
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Fundamentals of the BSW network Turing model. (a) Network

interactions between each of the three key players (Bmp, Sox9, and

Wnt) and their modifiers (Hox and Fgf). (b) Outline of a mouse forelimb

at 12 days post conception (12 dpc) with future digit positions

indicated. White line depicts the anatomical location of the simple

linear model of Turing pattern. (c) Schematic representations of the

linear model of initial heterogeneity (top) that is amplified by auto-

regulation and cross-regulation to generate a stable pattern (below).
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In the Bmp-Sox9-Wnt (BSW) model, it is assumed from

experimental data in other developmental systems, that

the rate of Bmp diffusion exceeds the rate of Wnt diffu-

sion [17�]. This difference in diffusion amplifies initial

heterogeneity by initiating a cascade of events. Bmp

induces expression of Sox9 that in turn inhibits the

inhibitory effect of Wnt [21] thus producing an autoca-

talysis of activation (satisfying the requirement for posi-

tive feedback in the Turing model). However, according

to the best-fit topological model, Sox9 also inhibits the

production of Bmp2 mRNA, which causes a local down-

regulation of Bmp signaling, attenuates the production of

Sox9, and thus relinquishes the inhibition of Wnt (satis-

fying the requirement for inhibition in the Turing mod-

el). This restricts the amplifying effect to local islands of

cells, and thus a pattern takes form where Sox9 (digit) is

expressed out of phase with both Bmp2 ligand and Wnt

target genes (interdigit) (Figure 1b,c).

On their own, these three signals form a computational

pattern remarkably similar to that formed by chondro-

genic nodules in micromass cultures of limb bud mesen-

chyme in absence of any additional signals [17�]. A

theoretical role for Hox and Fgf activities restricts the

physical space in which heterogeneity initiates a Turing

pattern and organizes the pattern into digit-like stripes

rather than meandering lines. The latter is predicted to

occur in response to a gradient of Fgf signal from the AER

that, together with Hox function, coordinately decreases

the inhibition and increases the activation of the Turing

network to set the thickness and orientation of stripes.

This causative relationship between levels of Hox and

Fgf and limb size ensures that as the modeled limb scales

larger (higher Hox and Fgf) or smaller (lower Hox and

Fgf), digit thickness also scales to predict that five smaller

or larger digits will form as a function of limb bud size.

Future challenges for the turing model
It is exciting that developmental genetics has advanced to

a point where theoreticians have enough ‘knowns’ on

which to base computational predictions and that those

models, in turn, can inspire experimental questions cre-

ating an overall iterative approach. Although the current

BSW network model simulates the periodicity of digit

and interdigit formation in the mouse autopod, it does not

yet test hypotheses as to the order of the appearance of

digits. Zhu and colleagues proposed an unexpected alter-

nating order to the emergence of mouse digits; digit

4 appears first, followed by 2, then 5, 3, and 1 [22��]. This

pattern would invoke a splitting of the interdigit field to

allow digit 3 to form in between nascent digits 2 and

4. There is some precedent for this in other proposed

models of stripe morphogenesis, namely in the Shh/Fgf

model of ruggae formation in the hard palate of the mouth

[23]. Growth of the tissue separates ruggae stripes such that

a new stripe is laid down in the space where inhibition is

released at a distance. Although the hypothesized Turing
Current Opinion in Genetics & Development 2015, 32:92–97
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(a) A hypothetical model for the alternating appearance of digits in the

limb. The first and second peaks that form may coincide with digits

4 and 2, respectively (top). Subsequent anisotropic growth may create

enough space for an additional peak to begin to form between these

peaks (middle). This could create the same stable pattern of digits

with an alternating order of appearance (bottom). (b) Similar molecules

function in the periodic pattern of phalanx (green) and joint interzone

(blue) development. Wnt induces the joint interzone by suppression of

Sox9 and activation of Gdf5. A secreted signal prevents the formation

of the next joint within closer range of the prior joint (red).
model of ruggae formation did not take a computational

approach to mathematically explain this phenomenon,

these experimental observations may serve as inspiration

to refine the digit model. Pairing computational modeling

and experimental approaches can determine whether

regional anisotropic growth would allow for the alternating

appearance of digits. Separation of the future digits 2 and

4 by growth may expand the out of phase (interdigit) field

large enough for the appearance of a new peak (digit)

(Figure 2a).

In addition to the sequence of digit-interdigit-digit in the

anterior-posterior axis, there is a periodicity to the forma-

tion of the phalanx-joint-phalanx pattern in the proximal-

distal axis. It is curious that the molecular mechanisms of

joint induction closely parallel the BSW network of digit

morphogenesis (Figure 2b). Gdf5, a member of the Tgfb

superfamily of proteins that also includes the Bmps, is

expressed in the developing joint interzone and is re-

quired for normal joint induction in mice and humans

[24,25]. Several Wnt ligands are also expressed in joints,

and Wnt signaling through b-catenin is both necessary

and sufficient for joint induction [26]. Experimental

manipulation in chick embryos indicates that Wnt9a is

sufficient to induce ectopic joints, and that the presence

of a joint inhibits the formation of other joints at close

proximity [27��]. Furthermore, interactions between the

newly formed phalanx and the next nascent phalanx seem

to influence the size, and thus joint positions, along the

series of phalanges [28]. Together these observations of

a remarkably similar set of molecules communicating as

activators and inhibitors across a field of tissue suggest a

holistic approach to modeling the autopod may eventually

lead to an understanding of coordinated self-organization

in two orthogonal axes.

Implications for a Turing mechanism in the
evolution of the autopod
To date, Turing models have been closely analyzed for

their ability to explain the elaboration of the autopod, the

evolutionary origin of digits, and subsequent canalization

of pentadactyly [13,15�]. These studies have focused on

modeling the observed pattern of endochondral skeletal

elements in basal fish and fossilized early tetrapods and,

while valuable, are challenging to experimentally validate

due to the paucity of extant species. However, while all

living tetrapods arose from a pentadactyl ancestor [29],

the limb has continued to evolve in remarkable ways

including the convergent loss of digits again and again

throughout all major clades. Two recent papers investi-

gated the mechanisms of digit loss in a variety of mam-

malian species and identified distinct motifs of Ptch1
attenuation during early limb bud pattern, and of expand-

ed cell death during post-patterning chondrogenesis

[30��,31]. Although this work identifies important mech-

anisms of digit loss, it also highlights the complex and

multifaceted process of limb evolution and leaves open
Current Opinion in Genetics & Development 2015, 32:92–97 
questions about additional mechanisms that complement

and reinforce these motifs and that determine the posi-

tion of digit condensations — questions that may best

be addressed by pairing computational predictions and
www.sciencedirect.com
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experimental validation given the scarcity of some em-

bryonic specimens.

In order for pattern to self-organize in a Turing model, the

initially low and homogeneous expression of activator and
Figure 3
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inhibitor must be destabilized, and yet this does not occur

randomly in the autopod. Most living pentatactyl species,

including the mouse, have a robust and reproducible

position of digits with a central axis of symmetry about

the middle digit (digit 3). Indeed, when the diffusion
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4 dpc), and horse (30 dpc) embryos at the same magnification

h a depiction of the approximate size and position of the future digit

stages for each species that are approximately equivalent to 13 dpc

bryos and 200 mm for limb buds.
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parameters of the BSW model are limited to the early

posterior-restricted position of Hoxd13 expression as the

point of initial heterogeneity, a very reproducible and

stereotyped series of stripes arises that recapitulates the

conserved pentadactyl form [17�]. Artiodactyls, in con-

trast, have shifted the position of digits such that the axis

of autopod symmetry centers on the interdigital space

between digits 3 and 4 [32]. If the early autopod expres-

sion of Hoxd13 establishes the position of the first digit to

form, digit 4, perhaps the distal shift in Hoxd13 expression

observed in the pig and cow functionally relates to the

shift in digit position in these species [30��,31]. Later

expression of Hoxd13 in the camel limb bud shows a

posterior bias, but earlier specimens should be analyzed

to determine if a similar early distalization of Hoxd13 may

be independent of the Ptch1 attenuation that is present in

cow and pig but not in camel.

Surprisingly, while the early limb buds of the horse and

camel appear smaller than mouse relative to total body

size, the width/length ratio seems greater than one

might expect given the fact the horse forms only a

single digit flanked by two truncated condensations,

and the camel forms only two complete digits with

flanking nodules [30��]. Furthermore, while these mor-

phometries have not yet been quantified, each of the

digits that form in these species seems larger than

expected as a proportion of the autopod field

(Figure 3). Though logistically challenging, it will be

interesting to collect a series of horse and camel em-

bryonic specimens in order to generate MorphoMovies

simulating the growth of each species [17�]. Given the

apparently wider than expected autopod, it would

be predicted that more digits should form in each of

these species than what occurs in nature. Adjusting the

model parameters may lead to equations that predict

altered levels of signaling output in either or both of

the Bmp and/or Wnt pathways that recapitulate the

observed digit pattern and size. These models can then

be experimentally validated in embryos thus limiting

the number of specimens required to address the fun-

damental and unanswered question of how digit size

and number are coordinately modified.

Our understanding of limb development mechanisms has

advanced in strides since the earliest embryological

manipulations and mathematical theories, aided in part

by developmental genetics and increasing computational

power. Alan Turing would likely be pleased with the

current and future state of the field given the fact we are

finally near an explanation not only for the zebra’s stripes

but also for some of ‘the horse part’.
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